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Our next goal is to study primes
in arithmetic progressions a mod 2

We already saw that if a q 1 then
there are infinitely many primes a modq
Moreprecisely if mode is non principal
then 11 x to Dirichlet's theorem and
this implies distribution results of the form
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the sum is over non trivialzeros f of LIS x
with multiplicity
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Next we look of a variant of zero free region
for LIS X
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Obtain same contradiction as before
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Therefore t 0 so I mustbe real

Uniqueness Assume there are two zeros
1 Iq β B2 1 possibly equal
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Corollary There is at most one character
modulo q with a Siegel zero a real zero
with Ss 1 Egg
Moreover for Q 3 there is at most one

q Q for which it exists a primitive character mody
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Proof Follows directly from previous lemma
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Remarks This shows that PNT in AP would
follow easily if we have no Siegel Zeros
We need a way to control size of Siegel zeros



Also note that PNT in AP follows for
modulus 2 bounded by constant 1 since there

are finitely many
characters of modulus q

their real zeros are uniformly boundedaway
from 1 So we now can provefor example
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It ispossible to obtain stronger results if we
are interested in average of error terms rather
than bounding each individual one
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This shows thataverage error term is O G 5

as good as RH This theorem is beyond the scope
of this course


