Recall: Explicit formula for $\psi(x)$: For $2 \le T \le x$: $\psi(x) = x - \sum_{s=1}^{x} \frac{x^{s}}{f} + O\left(\frac{x(f_{x})^{2}}{f}\right).$ Zero-fre region for y(s): 3 constant C>0 S.l. if g= T+it is a zero of g(s). then J = 1 - Seg (2+/t/) There exists a constant e_{2} o $\psi(x) = x + O(x e^{-c_{2}\sqrt{l_{2}x}})$. Proof: We know that for $2 \le T \le X$, we have $U(X) = X - \sum_{h \le 1 \le T} \frac{X^{5}}{5} + O\left(\frac{X(\log X)^{2}}{T}\right).$ For each of in the sum, we have $1X^{S} = X \stackrel{less)}{=} x \stackrel{l-L_{g}}{=} x$ Therefore $\psi(x) = x + O\left(x^{\frac{1-t_0}{t_0}T} \geq \frac{1}{|f_0|}\right) + O\left(\frac{x(\log x)^2}{T}\right)$. There are O(log(1+n)) zeros with 1 hn s/e sn, n+13, therefore the sum is of size O((log7)2).

Choose T= exp (Tlog x) to balance size of error terms. Then we sind indeed that, for a suitable constant coso $\psi(x) = x + O(x exp(-c_1 Jlayx)).$ D (Say C_= min (\(\frac{C}{2}, \frac{1}{2} \)). Remark: Recall that for any 200, C=0, NeW, (log X)" 22 exp(c)lox) 24 X2. Corollary: (Prime number theorem) T(x) = Li(x) + O(x exp(-c, 5logx)).moof: Recall &(x) = 5 log p We showed $\varphi(x) = \varphi(x) + O(\sqrt{x} (\log x)^2)$ $= 2 \varphi(x) = x + O(x \exp(-c\sqrt{\log x})).$ By partial summation: $V(x) = \frac{e(x)}{\log x} + \int \frac{e(t)}{t(\log t)^2} dt$ Hence $TT(x) = \frac{x}{\log x} + \int \frac{1}{(\log t)^2} dt + O(x e^{-\frac{c}{2} \frac{\pi}{6} x}) + \int \frac{c}{(\log t)^2} dt$

Main term: Note that (-togt) = - theyt)2. There fore x + S for alt = $= \frac{x}{l_{SX}} + \int \frac{-t}{l_{S}t} \int_{3/2}^{X} + \int \frac{dt}{l_{S}t} dt = 2i(x) + O(2).$ Error term: Note that the tellion

is on ineversing function

Hence Selfor dt ele. X Selfor dt

2x. e-cylax.

2x. e-cylax.

His is OCL) Our next goal is to study prines in arithmetic progressions (a mod 2). We already saw that if (a, g) = 1, then there are infinitely many primes = a (mad g). More precisely, if $\chi(mod g)$ is non-principal, then $L(1, \chi) \neq 0$ (whichlet's theorem) and this implies distribution results of the form

This is Mertens restricted

PEX P (42) log X + O2(1) (This is Mertens restricted

PEX P (42) log X + O2(1) (This is Mertens restricted

Mertens (s weaker than PNT) We want to obtain stronger results, an equivalent of prime number theorem in arithmetic progressions; but also with uniformity in g!

(From now on, consider 2 a parameter alongside x). Denote 17(x; 2,a) = \(\frac{2}{\rho\infty} \lambda, \\ \rho\infty \\ \rho\infty \alpha(\varepsilon) \\ \rho\infty $\Theta(X', Q, \alpha) = \sum_{\substack{p \in X \\ p \equiv \alpha(Q)}} \log p, \quad \Psi(X; Q, \alpha) = \sum_{\substack{n \leq X \\ n \equiv \alpha(Q)}} \Lambda(n).$ For a character X (mod 2), define $\psi(x; x) := \sum_{n \leq x} \chi(n) \Lambda(n)$. Then $\psi(x; 2, a) = f(z) = \frac{1}{2} \sum_{x} \overline{\chi}(a) \psi(x, x)$ (by orthogonality of characters)

Also, we see that for Recs) > 1. we have $\frac{\sum \chi(n) \chi(n)}{n^s} = -\frac{L'(s, \chi)}{L(s, \chi)}.$ Hence, as in the proof of PNT we studied the properties of 415), we now study 215,x), in particular the location of zeros & of Us, x) play an important rale. Lemma: let X a primitive character modulo g(for $g \ge 2$). Then for $-1 \le \sigma \le 2$, $L'(\sigma + it) = \frac{1}{S-g} + O(\log(2(|t|+2)))$. $L(\sigma + it) = \frac{1}{S-g+1} + O(\log(2(|t|+2)))$. (the sum is over non-trivial zeros g of L(s,x) with multiplicity). Pf: Same as for 41/15), but there is no pole at s=1, see exercises. Next re look of a variout of "zero-free region"
for Us, x). Theorem: There exists on absolute constant c-o such that if X a character mad 2, then the region Rz-SS: Re(S) > 1- C leg/2(1/m/s)/+1)

contains no zero of 2/s, x),

unless X is quadratic, in which case L/s, x)

has at most one, necesarily real and simple

zero in Rz. zero in Rz. Remark: Such a zero lif it exists), is called exceptional zero, or Siegel zero. Troof: If X (mod 2) is induced by X (mod 2), then U(s,x)= L(s,x*) | (1-x(p)). This implies zeros of L(s,x) and L(s,x) coincide in Re(s) >0, so we con ossume W/06 X is primetive. In particular, con also assume X + X. Isince une know zero-fre region for Y(s)). Note that, for Jose, similarly as before,

For Necs) > 1, $L'(S, \chi^2) - L'(S, \chi^*) = \sum_{p, l \neq} \frac{d}{dS} \left(1 - \chi^*(p)\right)$ $= \sum_{p=1}^{\infty} \chi^*(p) p^{-s} \log p \geq \log 2$ $p \leq 1 - \chi^*(p) p^{-s} \qquad p \leq \log 2$ Hence Re[-1'10+2it, x2))=-Re[-1'10+2it, x*)) + O(long 2). Using previous lemma, since x* primitire le [- 4' (0 ret, x*)) = C. leg (2(t/+2)),
for some universal C = 0. Therefore, putting it all together:

4 = 3 + 0 (log (g (16/+2)). Chaose $\sigma = 1 + 4 \sqrt{\log(2(|t|+2))}$ Then 4 log (9(16/+2)) = 3 log (9(16/+2)) + 0 (log 19(16/+1)) Contradiction for 5 small anough.

Case 2 × quadratic, x=x0 Since US, Xo) = g(S) / (1 - L), then for Recs): 2, ve have L'(S, Xo) - G'(s) et lag 2 L(S, Xo) & Elos 2 (Same argument as in previous case) Hence Re(-4 (0+rit, x)) = - Re(4 (0+rit)), O(lyg) (Using some arguments as before and partial fractional expansion for 2/s),

where the term 1 appears. Case 2.1 $|t| \ge \sqrt{\frac{1}{\log 2}}$. Choose $0 = 1 + \frac{4\sqrt{5}}{\log (2(|t|+2))}$ Then $Re\left(\frac{1}{\sigma-2+iit}\right) = \frac{\sigma-1}{(\sigma-1)^2+(4t)^2} = \frac{\log g}{(\sigma-1)^2+(4t)^2}$ So we have $\frac{4}{\sigma-B} \in \frac{3}{\sigma-1} + O(\log(2(161+2))$. Obtain same contradiction as before

Case 2.2: Octtle Just. Since X is real, if g is a zero of L(s, x),

g is also a zero. Hence

-L(\sigma, \chi) \(\xeta - \frac{1}{\sigma - \beta - \beta - \text{it}} \)

\[
\text{To-B-it} \quad \sigma - \beta \text{D-\beta it} \] $= -\frac{2(\sigma - \beta)}{(\sigma - \beta)^2 + t^2} + O(\log q).$ On the other hand, $-L'(\sigma, \chi) = \sum_{n} \frac{N(n)\chi(n)}{n\sigma} = -\sum_{n} \frac{N(n)}{n\sigma} - \frac{Q'(\sigma)}{2}$ $\geq -\frac{1}{6!} + O(1)$ =) $-\frac{1}{\sigma-1} \leq -\frac{2(\sigma-\beta)}{\sigma-\beta^2+t^2} + O(\log 2)$. Choose $\sigma = 2 + 2 \sigma$. Then $|t| \leq \frac{1}{2} (\sigma - 1) \leq \frac{1}{2} (\sigma - \beta)$ => - $log 2 \le -8/5 + O(log 2) \le -8/5 log 2$ (Recall $\beta > 1 - \frac{1}{4} - \frac{1}{4} - \frac{1}{4} - \frac{1}{4} - \frac{1}{4}$)
This is a contradiction if δ is small enough.)

Therefore t=0, so 3 must be real. Uniqueness: Assume there are two zeros

1-5-6 B2 6 B2 6 L (possibly equal) Same argument spaces _1 = 20-B1-B2 + O(log 2)

5-1 (5-B2)(5-B2) Choose $\sigma = 1 + 45$, we obtain the controlidion $-\frac{\log 2}{45} = -\frac{8}{25} \cdot \frac{\log 2}{5} + 01 \cdot \log 2$ Lemma (bandau): let X2 (mod 22) and X2 (mod 22) two distinct, real, primitive characters. Let B; a real zero of L(S, X;). Then min (β_1, β_2) $\geq 1 - \frac{\zeta_2}{\log 2 \cdot 2}$, for some (universal) C2>0. Proof: For o > 1, ve have

$$-\frac{y'(\sigma)}{y} - \frac{L'}{2}(\sigma, \chi_{2}) - \frac{L'}{2}(\sigma, \chi_{2}\chi_{2})$$

$$= \frac{N(n)}{n\sigma} (1 + \chi_{2}(n) + \chi_{1}(n) + \chi_{2}\chi_{2}(n))$$

$$= \frac{N(n)}{n\sigma} (1 + \chi_{2}(n)) (1 + \chi_{1}(n)) = 0.$$

Note that $\chi_{2}\chi_{2}$ is NOT the principal character modulo $g_{2}g_{2}$ (otherwise χ_{2} and χ_{2} visual induce some character modulo $g_{2}g_{2}$).

So $-\frac{g'(\sigma)}{g} = \frac{1}{\sigma-1} + o(1)$

$$-\frac{L'}{2}(\sigma, \chi_{1}) = \frac{1}{\sigma-1} + o(\log g_{1}), i=1,2$$

$$-\frac{L'}{2}(\sigma, \chi_{2}\chi_{1}) \in O(\log (2222))$$

So $\frac{1}{\sigma-\beta_{2}} + \frac{1}{\sigma-\beta_{1}} = \frac{1}{\sigma-1} + o(\log g_{2}g_{2}).$

Choose $\sigma = 1 + \frac{1}{\sigma-1} = \frac{\log g_{2}g_{2}}{\sigma-n\sin(\beta_{2},\beta_{1})} = \frac{\log g_{2}g_{2}}{\sigma-n\sin(\beta_{2},\beta_{1})} = \frac{\log g_{2}g_{2}}{\sigma-n\sin(\beta_{2},\beta_{1})} = 0.$
 $= \sum_{n=1}^{\infty} \min(\beta_{2},\beta_{1}) \leq 1 - \frac{1}{\log(g_{2}g_{1})} \left(\frac{2}{\sigma^{-2}+\sigma(2)} - \frac{\sigma}{\sigma}\right).$

Corollary: There is at most one character modulo 2 with a Siegel zero (a real zero with 8 > 1 - (3) Moreover, for Q = 3, there is at most one

2 = Q = Sor which it exists a primitive character X mad y

with a real zero $S > 1 - C_2$ Proof: Follows directly from previous lemma

with $C_3 = C_2$. Theorem: There exists a constant C4 > 0 such that if 9 \(\) exp (2C4 Tlagx) and \(\) (15, \(\)) hes no exceptional zero, then $\psi(x, x) = 1_{x=x_0} x + O(x exp(-c_4) \log x)$. If L(S, x) has an exceptional zero Be, then $\psi(x,\chi) = -\frac{\chi^{B_2}}{B_1} + O(\chi \exp(-c_4 \sqrt{l_3} \chi)).$ Proof: Exercise. Remark: This shows that PNT in AP would follow lasily if we have no siegel 2000s. We need a vey to control size of Siegel 2000s.

Also note that PNT in AP Sollows for modules 2 bounded by constant I since there cere fintely many characters of natules 2,
their real zeros are uniformly bounded away
from 1). So we now can prove for example

I (X; 10,1) - 4 li(X) + 0 (X exp(-c vlex)). There is a way to have some control of Size of Soegel Zero: Theorem (Siegel) Let &>0. There exists a constant (12) >0 such that for each real, primitive character & (modulo 2), we have $L(1,\chi) \geq C(\varepsilon) \chi^{-\varepsilon}$. Renary: Constant C(E) is ineffective. If we assume this, one can prove a version of PNT in AP uniformly for all 2 = (lay x),

Theorem (Scagel-Walfisz). Let A so. There exist c=c(A) = 0 such that

Sor all 9 & Ilag x) A and (a, 9)=1, $\Psi(X; g, a) = \underbrace{X}_{f(g)} + O(X e^{-CJGx})$ and $T(X; g, a) = \underbrace{Li(X)}_{f(g)} + O(X e^{-CJGx}).$ It is possible to obtain strongen results if we are interested in average of error terms, nother than bounding lock individual one. Let E(x, g) - max / (4(x; 2, a) - x / (1/2) Theorem (Bonbielli-Vinaghodor)
Let X, Q2 be such that X- 4 Q 4 X,
Son Sone A >0. Then 5 max E(g, g) = O(Q:X e(gx)5). This shows that are mage error term is O(X (gx)5), as good as RH. This theorem is degod the scape of this course.